SaLaTa

What is SaLaTa?
SaLaTa is a musical note naming and interval naming system.

What are the advantages?
It simplifies by letting an equal-tempered note always go by the same name. The names are also interval consistent in that the vowels correlate to the two whole-tone scales. Furthermore, the new note names are easier to sing.

What are the new note names, and how do they relate to the traditional names?

Do Pa Ro Na Mo Fa Vo Sa Go La Bo Ta
C Db D Eb E F Gb G Ab A Bb B

The two whole-tone scales comprise these notes:

Do Ro Mo Vo Go Bo
Pa Na Fa Sa La Ta

The equivalent of a C major scale becomes:

Do Ro Mo Fa Sa La Ta Do

The black keys on the piano are:

Pa Na Vo Go Bo

The equivalent of an F major scale becomes:

Fa Sa La Bo Do Ro Mo Fa

Notice that in a major scale you always have three notes with one of the vowels, followed by four notes with the other vowel.

Intervals are also consistent. For example, traditional perfect fifths always have differing vowels:

DoSa PaDo

Traditional major thirds have vowels that are alike:

DoMo PaFa

Traditional minor thirds have differing vowels:

DoNa PaMo

Here is the equivalent of a C7 chord (C E G Bb):

DoMoSaBo

SaLaTa intervals

A digit indicates the number of steps between two notes. We use "steps" to describe what is traditionally known as half steps or semitones. The interval between Do and Ro, for instance, is 2 steps.

The note we start from is always 0. Numbers 10 and 11 will be replaced by X and Y, respectively. When we get to the octave, instead of 12 we add an apostrophe and write '0.'

Do Pa Ro Na Mo Fa Vo Sa Go La Bo Ta Do Pa Ro Na ...

0 1 2 3 4 5 6 7 8 9 X Y '0' '1' '2' '3' ...

The equivalent of two octaves is '0', and so on.
Extended SaLaTa note names

Extended SaLaTa makes it possible to also describe intervals that correspond to Pythagorean tuning. This allows us to retain all information from traditional nomenclature. It can provide intonation cues, and shows how everything relates to the spiral of fifths, instead of just the circle of fifths. It also allows microtonality.

\(n = \text{natural}, \ b = \text{bright}, \ d = \text{dark}, \ xb = \text{extra bright}, \ xd = \text{extra dark}, \ xxb = \text{extra-extra bright}, \text{ etc.} \)

There are twelve notes in each of the above categories, except that there are only seven naturals.

SaLaTa’s natural notes

\[
\begin{align*}
\text{nFa} & \quad \text{nDo} & \quad \text{nSa} & \quad \text{nRo} & \quad \text{nLa} & \quad \text{nMo} & \quad \text{nTa} \\
F & \quad C & \quad G & \quad D & \quad A & \quad E & \quad B
\end{align*}
\]

SaLaTa’s bright notes

\[
\begin{align*}
\text{bVo} & \quad \text{bPa} & \quad \text{bGo} & \quad \text{bNa} & \quad \text{bBo} & \quad \text{bFa} & \quad \text{bDo} & \quad \text{bSa} & \quad \text{bRo} & \quad \text{bLa} & \quad \text{bMo} & \quad \text{bTa} & \quad \text{xbVo} & \quad \text{xbPa} & \quad \text{xbGo} \\
F\# & \quad C\# & \quad G\# & \quad D\# & \quad A\# & \quad E\# & \quad B\# & \quad F## & \quad C## & \quad G## & \quad D## & \quad A## & \quad E## & \quad B## & \quad F###
\end{align*}
\]

SaLaTa’s dark notes

\[
\begin{align*}
& \quad \text{xdGo} \quad \text{xdNa} \quad \text{xdBo} \quad \text{dFa} \quad \text{dDo} \quad \text{dSa} \quad \text{dRo} \quad \text{dLa} \quad \text{dMo} \quad \text{dTa} \quad \text{dVo} \quad \text{dPa} \quad \text{dGo} \quad \text{dNa} \quad \text{dBo} \\
& \quad Bbbb \quad Fbb \quad Cbb \quad Gbb \quad Dbb \quad Abb \quad Ebb \quad Bbb \quad Fb \quadCb \quad Gb \quad Db \quad Ab \quad Eb \quad Bb
\end{align*}
\]

By concatenating darks, naturals and brights, in that particular order, we get the "sequence of seven steps" that corresponds to the traditional sequence of perfect fifths.

The difference between, for example, bVo and dVo is that bVo has a slightly higher intonation than dVo in Pythagorean tuning.

Extended SaLaTa intervals

The most common intervals:

\[
\begin{align*}
\text{n0} & \quad \text{d1} & \quad \text{b1} & \quad \text{n2} & \quad \text{d3} & \quad \text{b3} & \quad \text{n4} & \quad \text{n5} & \quad \text{d6} & \quad \text{b6} & \quad \text{n7} & \quad \text{d8} & \quad \text{b8} & \quad \text{n9} & \quad \text{dX} & \quad \text{bX} & \quad \text{n'0} \\\nP\text{l} & \quad m2 & \quad +1 & \quad M2 & \quad m3 & \quad +2 & \quad M3 & \quad P4 & \quad -5 & \quad +4 & \quad P5 & \quad m6 & \quad +5 & \quad M6 & \quad m7 & \quad +6 & \quad M7 & \quad P8
\end{align*}
\]

Example:
The interval between nDo and dGo is d8, but the interval between nDo and bGo is b8. The interval between C and Ab is m6, but the interval between C and G# is +5.
SaLaTa chord symbols

A chord can be expressed by its step intervals. A major chord is thus 047, but in chord symbols we leave out 0 and simply write 47. A chord symbol can have a sign in superscript that will refer to the intervals in the chord. Intervals can also be explicitly added in subscript.

- 47
- 37
- 47X
- 37X
- 57
- 369

SaLaTa chord symbols are very specific about the intervals to include. Numbers in subscript should be written in numerical order. The vowels in the note names are left out. Here are some examples:

- D\(^\wedge\) C
- D\(^\wedge\) C7
- D\(_2\) C9
- D\(_{25}\) C11
- D\(_{259}\) C13
- D\(^\wedge\) Cm
- D\(^\wedge\) Cm7
- D\(_{36X}\) Cm7[\(b5\)]
- D\(^\wedge\) Csus4
- D\(_{2X}\) C9sus4
- D\(^\wedge\) Cdim7
- B–D\(^\wedge\) C/Bb

A chord symbol with an asterisk could be anything you specify:

- D\(^*\) Write, for example, *158Y above the stave.
Analyzing music with SaLaTa

The method presented here is an alternative to traditional Roman numeral analysis.

Fixed reference (always 0) Movable reference (in relation to the fixed reference)

We are basically only replacing the note names in SaLaTa chord symbols with intervals that relate to a fixed reference.

The fixed reference is normally equal to the key signature.

For various modes that begin on other steps than 0, in the natural scale of the key signature, it is still recommended to use the key signature as the fixed reference. This should make things more uniform and easier to handle. Major chords that stay within the key signature are thus on steps 0 5 7, while minor chords are on steps 9 2 4.

Below is an excerpt from Bach's Chorale #300. Traditional analysis is shown along with SaLaTa analysis.

Chorale #300, phrase 1

\[
\begin{array}{cccccccccccc}
| & | & | & | & | & | & | & | & | & | & | \\
\text{a:} & i & 6 & \frac{5}{3} & V^4-3 & viio^7/iv & iv & viio^7/V & V \\
\text{Do:} & 9 & 3-9 & 9_3 & 4^- & 4^\# & 9-4^\circ & 2^\circ & 3^\circ & 4^\circ \\
\end{array}
\]